牛牛热久草网

  • <tr id='tJvDpe'><strong id='tJvDpe'></strong><small id='tJvDpe'></small><button id='tJvDpe'></button><li id='tJvDpe'><noscript id='tJvDpe'><big id='tJvDpe'></big><dt id='tJvDpe'></dt></noscript></li></tr><ol id='tJvDpe'><option id='tJvDpe'><table id='tJvDpe'><blockquote id='tJvDpe'><tbody id='tJvDpe'></tbody></blockquote></table></option></ol><u id='tJvDpe'></u><kbd id='tJvDpe'><kbd id='tJvDpe'></kbd></kbd>

    <code id='tJvDpe'><strong id='tJvDpe'></strong></code>

    <fieldset id='tJvDpe'></fieldset>
          <span id='tJvDpe'></span>

              <ins id='tJvDpe'></ins>
              <acronym id='tJvDpe'><em id='tJvDpe'></em><td id='tJvDpe'><div id='tJvDpe'></div></td></acronym><address id='tJvDpe'><big id='tJvDpe'><big id='tJvDpe'></big><legend id='tJvDpe'></legend></big></address>

              <i id='tJvDpe'><div id='tJvDpe'><ins id='tJvDpe'></ins></div></i>
              <i id='tJvDpe'></i>
            1. <dl id='tJvDpe'></dl>
              1. <blockquote id='tJvDpe'><q id='tJvDpe'><noscript id='tJvDpe'></noscript><dt id='tJvDpe'></dt></q></blockquote><noframes id='tJvDpe'><i id='tJvDpe'></i>

                人工智能↘頂會

                CVPR2021最新信息及已♀接收論文/代碼

                Submitted by neurta on Tue, 06/22/2021 - 09:23
                動作分割 Learning To Segment Actions From Visual and Language Instructions via Differentiable Weak Sequence Alignment 時序動作分割 Temporal Action Segmentation from Timestamp Supervision code Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation code 無監督動作分无事献殷勤个割 Action Shuffle Alternating Learning for Unsupervised Action Segmentation 監督動作分割 Anchor-Constrained Viterbi for Set-Supervised Action Segmentation 視頻動作分割 Global2Local: Efficient Structure Search for Video Action Segmentation 從全局到局部:面向視頻動作分割的高效網絡結構搜索 解讀:19 Improving Unsupervised Image Clustering With Robust Learning code 利用魯棒學習改進無監督圖像聚類慢慢地将车技術 Jigsaw Clustering for Unsupervised Visual Representation Learning oralcode Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels code Differentiable Patch Selection for Image Recognition code Achieving Robustness in Classification Using Optimal Transport With Hinge Regularization 細粒度∑ 分類 Fine-grained Angular Contrastive Learning with Coarse Labels oral 使用自監督進行 Coarse Labels(粗標簽)的細粒度分類方面的工作。粗標簽與細粒度標簽相比,更¤容易和更便宜,因為細粒度標簽通常需要☆域專家。 Graph-based High-Order Relation Discovery for Fine-grained Recognition 基於特征間高階關系挖掘的細粒度識別方法 解讀:20 Fine-Grained Few-Shot Classification with Feature Map Reconstruction Networks A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification oral GLAVNet: Global-Local Audio-Visual Cues for Fine-Grained Material Recognition Learning Deep Classifiers Consistent With Fine-Grained Novelty Detection 圖像分類 MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition